$\mathrm{a}=$?
https://www.linkedin.com/groups/8313943/8313943-6410358546919145476
Let $n \geq 2$ be an integer.
Find all real numbers a such that there exist real numbers
x_{1}, \ldots, x_{n} satisfying $x_{1}\left(1-x_{2}\right)=x_{2}\left(1-x_{3}\right)=\ldots . .=x_{n-1}\left(1-x_{n}\right)=$ $x_{n}\left(1-x_{1}\right)=a$.

Solution by Arkady Alt, San Jose, California, USA.

Let A be set all real numbers a such that system of equations
(1) $\left\{\begin{array}{c}x_{k}\left(1-x_{k+1}\right)=a, k=1,2, . ., n-1 \\ x_{n}\left(1-x_{1}\right)=a\end{array}\right.$
is solvable with respect to $x_{1}, \ldots, x_{n} \in \mathbb{R}$.
Noting that for $a=0$ the system (1) has obvious solution $x_{1}=x_{2}=$ $\ldots=x_{n}=0$ we assume further that $a \neq 0$.This immediately implies that $x_{i} \neq 0, i=1,2, \ldots, n$ and we can rewrite the system as follows:
(2) $\quad\left\{\begin{array}{c}x_{k+1}=h\left(x_{k}\right), k=1,2, . ., n-1 \\ x_{1}=h\left(x_{n}\right)\end{array}\right.$, where $h(x):=1-\frac{a}{x}=\frac{x-a}{x}$.

Let $h_{1}(x):=h(x), h_{n+1}(x)=h\left(h_{n}(x)\right), n \in \mathbb{N}$ and H_{n} be matrix of coefficients for

Mobius function $h_{n}(x)$, that is $h_{n}(x)=\frac{a_{n} x+b_{n}}{c_{n} x+d_{n}}$ and $H_{n}=\left(\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right), n \in$ \mathbb{N}.

Also let $h_{0}(x):=x$. Then $H_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), H_{1}=H=\left(\begin{array}{cc}1 & -a \\ 1 & 0\end{array}\right)$ and $H_{n+1}=H \cdot H_{n} \Longleftrightarrow$

$$
\left(\begin{array}{ll}
a_{n+1} & b_{n+1} \\
c_{n+1} & d_{n+1}
\end{array}\right)=\left(\begin{array}{cc}
1 & -a \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)=
$$

$$
\left(\begin{array}{cc}
a_{n}-a c_{n} & b_{n}-a d_{n} \\
a_{n} & b_{n}
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{c}
a_{n+1}=a_{n}-a c_{n} \\
b_{n+1}=b_{n}-a d_{n} \\
c_{n+1}=a_{n} \\
d_{n+1}=b_{n}
\end{array} \Longleftrightarrow\right.
$$

$$
\left\{\begin{array}{c}
a_{n+1}=a_{n}-a a_{n-1} \\
b_{n+1}=b_{n}-a b_{n-1} \\
c_{n+1}=a_{n} \\
d_{n+1}=b_{n}
\end{array}, n \in \mathbb{N} \text { and } a_{0}=1, a_{1}=1, b_{0}=0, b_{1}=-a\right.
$$

Since $\left(a_{n}\right)$ and $\left(b_{n}\right)$ satisfies to the same recurrence and $b_{2}=-a$ then $b_{n}=$ $-a a_{n-1}, n \in \mathbb{N}$.

Thus, $\quad H_{n}=\left(\begin{array}{cc}a_{n} & -a a_{n-1} \\ a_{n-1} & -a a_{n-2}\end{array}\right), n \geq 2$ and $h_{n}(x)=\frac{a_{n} x-a a_{n-1}}{a_{n-1} x-a a_{n-2}}, n \geq 2$.
Coming back to the system (2) we can see that $x_{k}=h_{k}\left(x_{1}\right), k=1,2, . ., n-$ 1 and $x_{1}=h_{n}\left(x_{1}\right)$,
that is x_{1} is solution of equation $h_{n}(x)=x$. Thus $A_{n}=\left\{a \mid h_{n}(x)=x, x \in \mathbb{R}\right\}$.
Since $h_{n}(x)=x \Longleftrightarrow \frac{a_{n} x-a a_{n-1}}{a_{n-1} x-a a_{n-2}}=x \Longleftrightarrow a_{n} x-a a_{n-1}=a_{n-1} x^{2}-$ $a a_{n-2} x \Longleftrightarrow$
(3) $a_{n-1} x^{2}-x\left(a_{n}+a a_{n-2}\right)+a a_{n-1}=0$,
where a_{n} is polynomial of a defined recursively by

$$
a_{n+1}=a_{n}-a a_{n-1}, n \in \mathbb{N}, a_{0}=1, a_{1}=1
$$

and quadratic equation (3) is solvable in real x iff its discriminant
$D_{n}:=\left(a_{n}+a a_{n-2}\right)^{2}-4 a a_{n-1}^{2}=a^{2} a_{n-2}^{2}+2 a a_{n} a_{n-2}-4 a a_{n-1}^{2}+a_{n}^{2}=$
$a^{2} a_{n-2}^{2}-4 a a_{n-1}^{2}+2 a a_{n-2}\left(a_{n-1}-a a_{n-2}\right)+\left(a_{n-1}-a a_{n-2}\right)^{2}=a_{n-1}^{2}(1-4 a)=$ $a_{n-1}^{2}(1-4 a)$ is
non negative then

$$
A_{n}=\left\{a \mid a_{n-1}^{2}(1-4 a) \geq 0\right\}=(-\infty, 1 / 4] \cup\left\{a \mid a_{n-1}=0\right\}, n \geq
$$

2.

For example, $a_{2}=1-a, a_{3}=1-2 a,, a_{4}=a^{2}-3 a+1, a_{5}=a^{2}-3 a+1-$ $a(1-2 a)=$
$3 a^{2}-4 a+1$ and $A_{2}=(-\infty, 1 / 4], A_{3}=(-\infty, 1 / 4] \cup\{1\}, A_{4}=(-\infty, 1 / 4] \cup$ $\{1 / 2\}$,

$$
A_{5}=(-\infty, 1 / 4] \cup\left\{\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right\}
$$

Note that for any $a \leq \frac{1}{4}$ system (1) solvable in \mathbb{R}. Indeed, since

$$
h(x)=x \Longleftrightarrow x^{2}-x+a=0 \Longleftrightarrow x \in\left\{\frac{1-\sqrt{1-4 a}}{2}, \frac{1+\sqrt{1-4 a}}{2}\right\}
$$

then $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(x, x, x, \ldots, x)$ for any such x is solution of (1) because for $x_{1}=x$ we have

$$
h_{k}\left(x_{1}\right)=h_{k}(x)=x, k=1,2, \ldots, n
$$

Therefore, to complete the solution of the problem remains find all solution of equation
$a_{n-1}(a)=0$ in real $a>1 / 4$ for any $n \geq 2$.
Since $a>1 / 4 \Longleftrightarrow \frac{1}{2 \sqrt{a}}<1$ then denoting $\alpha:=\arccos \frac{1}{2 \sqrt{a}}$ and $b_{n}:=$ $\frac{a_{n}}{(\sqrt{a})^{n}}$ we obtain

$$
a_{n+1}=a_{n}-a a_{n-1} \Longleftrightarrow \frac{a_{n+1}}{(\sqrt{a})^{n+1}}-\frac{1}{\sqrt{a}} \cdot \frac{a_{n}}{(\sqrt{a})^{n}}+\frac{a_{n-1}}{(\sqrt{a})^{n-1}}=0 \Longleftrightarrow
$$

(4) $b_{n+1}-2 \cos \alpha \cdot b_{n}+b_{n-1}=0, n \in \mathbb{N}$.

Since $b_{n}=c_{1} \cos n \alpha+c_{2} \sin n \alpha$ and $b_{0}=1, b_{1}=\frac{1}{\sqrt{a}}=2 \cos \alpha$ we obtain
$=1, c_{2}=\cot \alpha$ $c_{1}=1, c_{2}=\cot \alpha$
and, therefore, $b_{n}=\cos n \alpha+\cot \alpha \sin n \alpha=\frac{\sin (n+1) \alpha}{\sin \alpha}, n \in \mathbb{N}$.
Thus, for any $n \geq 2$ we have $a_{n}=\frac{a^{n / 2} \sin (n+1) \alpha}{\sin \alpha}$ and $a_{n}=0 \Longleftrightarrow$

$$
\left\{\begin{array}{c}
\sin (n+1) \alpha=0 \\
\sin \alpha \neq 0 \\
a=\frac{1}{4 \cos ^{2} \alpha}
\end{array} \Longleftrightarrow\right.
$$

$$
\left\{\begin{array}{l}
\alpha=\frac{1}{4 \cos ^{2} \frac{k \pi}{n+1}} \\
k=1,2, \ldots, n \\
a=\frac{1}{4 \cos ^{2} \alpha}
\end{array} \quad \Longleftrightarrow a=\frac{1}{4 \cos ^{2} \frac{k \pi}{n+1}}, k=1,2, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right.
$$

(since $\left.\cos ^{2} \frac{k \pi}{n+1}=\frac{(n+1-k) \pi}{n+1}, k=1,2, . ., n\right)$.
Thus, for any $n \geq 2$ equation $h_{n}(x)=x$ solvable in \mathbb{R} Iff
$a \in A_{n}=(-\infty, 1 / 4] \cup\left\{\left.\frac{1}{4 \cos ^{2} \frac{k \pi}{n}} \right\rvert\, k=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$

